::p_load(sf, tidyverse) pacman
Hands-on Exercise 1: Geospatial Data Wrangling with R
Overview
In this hands-on exercise, I learned how to import and wrangle geospatial data using appropriate R packages.
Getting Started
The code chunk below installs and load sf and tidyverse packages into R environment
Importing Geospatial Data
Importing polygon feature data
<- st_read(dsn = "Data/geospatial", layer = "MP14_SUBZONE_WEB_PL") mpsz
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`C:\lnealicia\ISSS624\Handson_ex01\Data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
Importing polyline feature data in shapefile form
The code chunk below uses st_read() function of sf package to import CyclingPath
shapefile into R as line feature data frame.
= st_read(dsn = "Data/geospatial",
cyclingpath layer = "CyclingPathGazette")
Reading layer `CyclingPathGazette' from data source
`C:\lnealicia\ISSS624\Handson_ex01\Data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 2558 features and 2 fields
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: 11854.32 ymin: 28347.98 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21
Importing GIS data in kml format
The pre-schools-location-kml
is in kml format. The code chunk below will be used to import the kml into R.
= st_read("data/geospatial/preschoolslocation.kml") preschool
Reading layer `PRESCHOOLS_LOCATION' from data source
`C:\lnealicia\ISSS624\Handson_ex01\Data\geospatial\PreSchoolsLocation.kml'
using driver `KML'
Simple feature collection with 2290 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
Checking the Content of A Simple Feature Data Frame
In this sub-section, I learned different ways to retrieve information related to the content of a simple feature data frame.
Working with st_geometry()
The column in the sf data.frame that contains the geometries is a list, of class sfc
. The geometry list-column can be retrieved using st_geometry() as shown in the code chunk below.
st_geometry(mpsz)
Geometry set for 323 features
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:
Working with glimpse()
We can learn more about the associated attribute information in the data frame using glimpse()
glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…
glimpse() report reveals the data type of each fields. For example FMEL-UPD_D
field is in date data type and X_ADDR
, Y_ADDR
, SHAPE_L
and SHAPE_AREA
fields are all in double-precision values.
Working with head()
To reveal complete information of a feature object, use head() of Base R.
head(mpsz, n=5)
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N
1 1 1 MARINA SOUTH MSSZ01 Y MARINA SOUTH
2 2 1 PEARL'S HILL OTSZ01 Y OUTRAM
3 3 3 BOAT QUAY SRSZ03 Y SINGAPORE RIVER
4 4 8 HENDERSON HILL BMSZ08 N BUKIT MERAH
5 5 3 REDHILL BMSZ03 N BUKIT MERAH
PLN_AREA_C REGION_N REGION_C INC_CRC FMEL_UPD_D X_ADDR
1 MS CENTRAL REGION CR 5ED7EB253F99252E 2014-12-05 31595.84
2 OT CENTRAL REGION CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3 SR CENTRAL REGION CR C35FEFF02B13E0E5 2014-12-05 29654.96
4 BM CENTRAL REGION CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5 BM CENTRAL REGION CR 85D9ABEF0A40678F 2014-12-05 26201.96
Y_ADDR SHAPE_Leng SHAPE_Area geometry
1 29220.19 5267.381 1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05 3506.107 559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66 1740.926 160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77 3313.625 595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70 2825.594 387429.4 MULTIPOLYGON (((26451.03 30...
Plotting the Geospatial Data
In geospatial data science, we are also interested to visualise the geospatial features.
plot(mpsz)
The default plot of an sf object is a multi-plot of all attributes, up to a reasonable maximum as shown above. We can, however, choose to plot only the geometry by using the code chunk below.
plot(st_geometry(mpsz))
Alternatively, we can also choose the plot the sf object by using a specific attribute as shown in the code chunk below.
plot(mpsz["PLN_AREA_N"])
Working with Projection
Map projection is an important property of a geospatial data. In order to perform geoprocessing using two geospatial data, both geospatial data need to be projected using similar coordinate system.
In this section, I learned how to project a simple feature data frame from one coordinate system to another coordinate system aka projection transformation.
Assigning EPSG code to a simple feature data frame
One of the common issue that can happen during importing geospatial data into R is that the coordinate system of the source data was either missing (such as due to missing .proj for ESRI shapefile) or wrongly assigned during the importing process.
This is an example the coordinate system of mpsz
simple feature data frame by using st_crs() of sf package as shown in the code chunk below.
st_crs(mpsz)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
Although mpsz
data frame is projected in svy21 but when we read until the end of the print, it indicates that the EPSG is 9001. This is a wrong EPSG code because the correct EPSG code for svy21 should be 3414.
In order to assign the correct EPSG code to mpsz
data frame, st_set_crs() of sf package is used as shown in the code chunk below.
<- st_set_crs(mpsz, 3414) mpsz3414
Now, let us check the CRS again by using the code chunk below.
st_crs(mpsz3414)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
Notice that the EPSG code is 3414 now.
Transforming the projection of preschool from wgs84 to svy21.
In geospatial analytics, it is very common to transform the original data from geographic coordinate system to projected coordinate system. This is because geographic coordinate system is not appropriate if the analysis requires distance or/and area measurements.
This is a scenario that st_set_crs() is not appropriate and st_transform() of sf package should be used. This is because we need to reproject preschool
from one coordinate system to another coordinate system mathemetically.
Let us perform the projection transformation by using the code chunk below.
<- st_transform(preschool,
preschool3414 crs = 3414)
Importing and Converting Aspatial Data
Importing the aspatial data
Since listings
data set is in csv file format, we will use read_csv() of readr package to import listing.csv
as shown the code chunk below. The output R object is called listings
and it is a tibble data frame.
<- read_csv("data/aspatial/listings.csv") listings
The code chunk below shows list() of Base R to examine if the data file has been imported correctly.
list(listings)
[[1]]
# A tibble: 3,483 × 18
id name host_id host_name neighbourhood_group neighbourhood latitude
<dbl> <chr> <dbl> <chr> <chr> <chr> <dbl>
1 71609 Villa in… 367042 Belinda East Region Tampines 1.35
2 71896 Home in … 367042 Belinda East Region Tampines 1.35
3 71903 Home in … 367042 Belinda East Region Tampines 1.35
4 275343 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
5 275344 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
6 289234 Home in … 367042 Belinda East Region Tampines 1.34
7 294281 Rental u… 1521514 Elizabeth Central Region Newton 1.31
8 324945 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
9 330095 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
10 369141 Place to… 1521514 Elizabeth Central Region Newton 1.31
# ℹ 3,473 more rows
# ℹ 11 more variables: longitude <dbl>, room_type <chr>, price <dbl>,
# minimum_nights <dbl>, number_of_reviews <dbl>, last_review <date>,
# reviews_per_month <dbl>, calculated_host_listings_count <dbl>,
# availability_365 <dbl>, number_of_reviews_ltm <dbl>, license <chr>
The output reveals that listing
tibble data frame consists of 4252 rows and 16 columns. Two useful fields we are going to use in the next phase are latitude
and longitude
.
Creating a simple feature data frame from an aspatial data frame
The code chunk below converts listing
data frame into a simple feature data frame by using st_as_sf() of sf packages
<- st_as_sf(listings,
listings_sf coords = c("longitude", "latitude"),
crs=4326) %>%
st_transform(crs = 3414)
Note
coords argument requires you to provide the column name of the x-coordinates first then followed by the column name of the y-coordinates.
crs argument requires you to provide the coordinates system in epsg format. EPSG: 4326 is wgs84 Geographic Coordinate System and EPSG: 3414 is Singapore SVY21 Projected Coordinate System. You can search for other country’s epsg code by referring to epsg.io.
%>% is used to nest st_transform() to transform the newly created simple feature data frame into svy21 projected coordinates system.
Examine the content of this newly created simple feature data frame.
glimpse(listings_sf)
Rows: 3,483
Columns: 17
$ id <dbl> 71609, 71896, 71903, 275343, 275344, 28…
$ name <chr> "Villa in Singapore · ★4.44 · 2 bedroom…
$ host_id <dbl> 367042, 367042, 367042, 1439258, 143925…
$ host_name <chr> "Belinda", "Belinda", "Belinda", "Kay",…
$ neighbourhood_group <chr> "East Region", "East Region", "East Reg…
$ neighbourhood <chr> "Tampines", "Tampines", "Tampines", "Bu…
$ room_type <chr> "Private room", "Private room", "Privat…
$ price <dbl> 150, 80, 80, 55, 69, 220, 85, 75, 45, 7…
$ minimum_nights <dbl> 92, 92, 92, 60, 60, 92, 92, 60, 60, 92,…
$ number_of_reviews <dbl> 20, 24, 47, 22, 17, 12, 133, 18, 6, 81,…
$ last_review <date> 2020-01-17, 2019-10-13, 2020-01-09, 20…
$ reviews_per_month <dbl> 0.14, 0.16, 0.31, 0.17, 0.12, 0.09, 0.9…
$ calculated_host_listings_count <dbl> 5, 5, 5, 52, 52, 5, 7, 52, 52, 7, 7, 1,…
$ availability_365 <dbl> 89, 89, 89, 275, 274, 89, 365, 365, 365…
$ number_of_reviews_ltm <dbl> 0, 0, 0, 0, 3, 0, 0, 1, 3, 0, 0, 0, 0, …
$ license <chr> NA, NA, NA, "S0399", "S0399", NA, NA, "…
$ geometry <POINT [m]> POINT (41972.5 36390.05), POINT (…
Table above shows the content of listing_sf
. A new column called geometry
has been added into the data frame. The longitude
and latitude
columns have been dropped from the data frame.
Geoprocessing with sf package
Besides providing functions to handling (i.e. importing, exporting, assigning projection, transforming projection etc) geospatial data, sf package also offers a wide range of geoprocessing (also known as GIS analysis) functions.
In this section, I learned how to perform two commonly used geoprocessing functions, namely buffering and point in polygon count.
Buffering
The scenario:
The authority is planning to upgrade the exiting cycling path. To do so, they need to acquire 5m of reserved land on the both sides of the current cycling path. You are tasked to determine the extend of the land need to be acquired and their total area.
The solution:
Firstly, st_buffer() of sf package is used to compute the 5-meter buffers around cycling paths
<- st_buffer(cyclingpath,
buffer_cycling dist=5, nQuadSegs = 30)
This is followed by calculating the area of the buffers
$AREA <- st_area(buffer_cycling) buffer_cycling
Lastly, sum() of Base R will be used to derive the total land involved
sum(buffer_cycling$AREA)
1774367 [m^2]
Point-in-polygon count
The scenario:
A pre-school service group want to find out the numbers of pre-schools in each Planning Subzone.
The solution:
The code chunk below performs two operations at one go. Firstly, identify pre-schools located inside each Planning Subzone by using st_intersects(). Next, length() of Base R is used to calculate numbers of pre-schools that fall inside each planning subzone.
$`PreSch Count`<- lengths(st_intersects(mpsz3414, preschool3414)) mpsz3414
Note: Different from st_intersection().
You can check the summary statistics of the newly derived PreSch Count field by using summary() as shown in the code chunk below.
summary(mpsz3414$`PreSch Count`)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 4.00 7.09 10.00 72.00
The top_n() of dplyr package is used to list the planning subzone with the most number of pre-schools
top_n(mpsz3414, 1, `PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 39655.33 ymin: 35966 xmax: 42940.57 ymax: 38622.37
Projected CRS: SVY21 / Singapore TM
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1 189 2 TAMPINES EAST TMSZ02 N TAMPINES TM
REGION_N REGION_C INC_CRC FMEL_UPD_D X_ADDR Y_ADDR SHAPE_Leng
1 EAST REGION ER 21658EAAF84F4D8D 2014-12-05 41122.55 37392.39 10180.62
SHAPE_Area geometry PreSch Count
1 4339824 MULTIPOLYGON (((42196.76 38... 72
The solution:
Firstly, the code chunk below uses st_area() of sf package to derive the area of each planning subzone.
$Area <- mpsz3414 %>%
mpsz3414st_area()
Next, mutate() of dplyr package is used to compute the density by using the code chunk below.
<- mpsz3414 %>%
mpsz3414 mutate(`PreSch Density` = `PreSch Count`/Area * 1000000)
Exploratory Data Analysis (EDA)
Many geospatial analytics start with Exploratory Data Analysis. In this section, I learned how to use appropriate ggplot2 functions to create functional statistical graphs for EDA purposes.
Firstly, we will plot a histogram to reveal the distribution of PreSch Density
.
hist(mpsz3414$`PreSch Density`)
gg2plot function
ggplot(data=mpsz3414,
aes(x= as.numeric(`PreSch Density`)))+
geom_histogram(bins=20,
color="black",
fill="light blue") +
labs(title = "Are pre-schools evenly distributed in Singapore?",
subtitle= "There are many planning sub-zones with a single pre-school, and, \nthere are two planning sub-zones with at least 20 pre-schools",
x = "Pre-school density (per km sq)",
y = "Frequency")
The solution:
ggplot(data=mpsz3414,
aes(y = `PreSch Count`,
x= as.numeric(`PreSch Density`)))+
geom_point(color="black",
fill="light blue") +
xlim(0, 40) +
ylim(0, 40) +
labs(title = "",
x = "Pre-school density (per km sq)",
y = "Pre-school count")