Hands-on Exercise 1: Geospatial Data Wrangling with R

Published

November 17, 2023

Modified

November 18, 2023

Overview

In this hands-on exercise, I learned how to import and wrangle geospatial data using appropriate R packages.

Getting Started

The code chunk below installs and load sf and tidyverse packages into R environment

pacman::p_load(sf, tidyverse)

Importing Geospatial Data

Importing polygon feature data

mpsz <- st_read(dsn = "Data/geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\lnealicia\ISSS624\Handson_ex01\Data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

Importing polyline feature data in shapefile form

The code chunk below uses st_read() function of sf package to import CyclingPath shapefile into R as line feature data frame.

cyclingpath = st_read(dsn = "Data/geospatial", 
                         layer = "CyclingPathGazette")
Reading layer `CyclingPathGazette' from data source 
  `C:\lnealicia\ISSS624\Handson_ex01\Data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 2558 features and 2 fields
Geometry type: MULTILINESTRING
Dimension:     XY
Bounding box:  xmin: 11854.32 ymin: 28347.98 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21

Importing GIS data in kml format

The pre-schools-location-kml is in kml format. The code chunk below will be used to import the kml into R.

preschool = st_read("data/geospatial/preschoolslocation.kml")
Reading layer `PRESCHOOLS_LOCATION' from data source 
  `C:\lnealicia\ISSS624\Handson_ex01\Data\geospatial\PreSchoolsLocation.kml' 
  using driver `KML'
Simple feature collection with 2290 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84

Checking the Content of A Simple Feature Data Frame

In this sub-section, I learned different ways to retrieve information related to the content of a simple feature data frame.

Working with st_geometry()

The column in the sf data.frame that contains the geometries is a list, of class sfc. The geometry list-column can be retrieved using st_geometry() as shown in the code chunk below.

st_geometry(mpsz)
Geometry set for 323 features 
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:

Working with glimpse()

We can learn more about the associated attribute information in the data frame using glimpse()

glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N  <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C  <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND     <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N   <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C   <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC    <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR     <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR     <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry   <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…

glimpse() report reveals the data type of each fields. For example FMEL-UPD_D field is in date data type and X_ADDRY_ADDRSHAPE_L and SHAPE_AREA fields are all in double-precision values.

Working with head()

To reveal complete information of a feature object, use head() of Base R.

head(mpsz, n=5)  
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
  OBJECTID SUBZONE_NO      SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1        1          1   MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2        2          1   PEARL'S HILL    OTSZ01      Y          OUTRAM
3        3          3      BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4        4          8 HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5        5          3        REDHILL    BMSZ03      N     BUKIT MERAH
  PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1         MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2         OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3         SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4         BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5         BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
    Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1 29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...

Plotting the Geospatial Data

In geospatial data science, we are also interested to visualise the geospatial features.

plot(mpsz)

The default plot of an sf object is a multi-plot of all attributes, up to a reasonable maximum as shown above. We can, however, choose to plot only the geometry by using the code chunk below.

plot(st_geometry(mpsz))

Alternatively, we can also choose the plot the sf object by using a specific attribute as shown in the code chunk below.

plot(mpsz["PLN_AREA_N"])

Working with Projection

Map projection is an important property of a geospatial data. In order to perform geoprocessing using two geospatial data, both geospatial data need to be projected using similar coordinate system.

In this section, I learned how to project a simple feature data frame from one coordinate system to another coordinate system aka projection transformation.

Assigning EPSG code to a simple feature data frame

One of the common issue that can happen during importing geospatial data into R is that the coordinate system of the source data was either missing (such as due to missing .proj for ESRI shapefile) or wrongly assigned during the importing process.

This is an example the coordinate system of mpsz simple feature data frame by using st_crs() of sf package as shown in the code chunk below.

st_crs(mpsz)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]

Although mpsz data frame is projected in svy21 but when we read until the end of the print, it indicates that the EPSG is 9001. This is a wrong EPSG code because the correct EPSG code for svy21 should be 3414.

In order to assign the correct EPSG code to mpsz data frame, st_set_crs() of sf package is used as shown in the code chunk below.

mpsz3414 <- st_set_crs(mpsz, 3414)

Now, let us check the CRS again by using the code chunk below.

st_crs(mpsz3414)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

Notice that the EPSG code is 3414 now.

Transforming the projection of preschool from wgs84 to svy21.

In geospatial analytics, it is very common to transform the original data from geographic coordinate system to projected coordinate system. This is because geographic coordinate system is not appropriate if the analysis requires distance or/and area measurements.

This is a scenario that st_set_crs() is not appropriate and st_transform() of sf package should be used. This is because we need to reproject preschool from one coordinate system to another coordinate system mathemetically.

Let us perform the projection transformation by using the code chunk below.

preschool3414 <- st_transform(preschool, 
                              crs = 3414)

Importing and Converting Aspatial Data

Importing the aspatial data

Since listings data set is in csv file format, we will use read_csv() of readr package to import listing.csv as shown the code chunk below. The output R object is called listings and it is a tibble data frame.

listings <- read_csv("data/aspatial/listings.csv")

The code chunk below shows list() of Base R to examine if the data file has been imported correctly.

list(listings) 
[[1]]
# A tibble: 3,483 × 18
       id name      host_id host_name neighbourhood_group neighbourhood latitude
    <dbl> <chr>       <dbl> <chr>     <chr>               <chr>            <dbl>
 1  71609 Villa in…  367042 Belinda   East Region         Tampines          1.35
 2  71896 Home in …  367042 Belinda   East Region         Tampines          1.35
 3  71903 Home in …  367042 Belinda   East Region         Tampines          1.35
 4 275343 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
 5 275344 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
 6 289234 Home in …  367042 Belinda   East Region         Tampines          1.34
 7 294281 Rental u… 1521514 Elizabeth Central Region      Newton            1.31
 8 324945 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
 9 330095 Rental u… 1439258 Kay       Central Region      Bukit Merah       1.29
10 369141 Place to… 1521514 Elizabeth Central Region      Newton            1.31
# ℹ 3,473 more rows
# ℹ 11 more variables: longitude <dbl>, room_type <chr>, price <dbl>,
#   minimum_nights <dbl>, number_of_reviews <dbl>, last_review <date>,
#   reviews_per_month <dbl>, calculated_host_listings_count <dbl>,
#   availability_365 <dbl>, number_of_reviews_ltm <dbl>, license <chr>

The output reveals that listing tibble data frame consists of 4252 rows and 16 columns. Two useful fields we are going to use in the next phase are latitude and longitude.

Creating a simple feature data frame from an aspatial data frame

The code chunk below converts listing data frame into a simple feature data frame by using st_as_sf() of sf packages

listings_sf <- st_as_sf(listings, 
                       coords = c("longitude", "latitude"),
                       crs=4326) %>%
  st_transform(crs = 3414)

Note

  • coords argument requires you to provide the column name of the x-coordinates first then followed by the column name of the y-coordinates.

  • crs argument requires you to provide the coordinates system in epsg format. EPSG: 4326 is wgs84 Geographic Coordinate System and EPSG: 3414 is Singapore SVY21 Projected Coordinate System. You can search for other country’s epsg code by referring to epsg.io.

  • %>% is used to nest st_transform() to transform the newly created simple feature data frame into svy21 projected coordinates system.

Examine the content of this newly created simple feature data frame.

glimpse(listings_sf)
Rows: 3,483
Columns: 17
$ id                             <dbl> 71609, 71896, 71903, 275343, 275344, 28…
$ name                           <chr> "Villa in Singapore · ★4.44 · 2 bedroom…
$ host_id                        <dbl> 367042, 367042, 367042, 1439258, 143925…
$ host_name                      <chr> "Belinda", "Belinda", "Belinda", "Kay",…
$ neighbourhood_group            <chr> "East Region", "East Region", "East Reg…
$ neighbourhood                  <chr> "Tampines", "Tampines", "Tampines", "Bu…
$ room_type                      <chr> "Private room", "Private room", "Privat…
$ price                          <dbl> 150, 80, 80, 55, 69, 220, 85, 75, 45, 7…
$ minimum_nights                 <dbl> 92, 92, 92, 60, 60, 92, 92, 60, 60, 92,…
$ number_of_reviews              <dbl> 20, 24, 47, 22, 17, 12, 133, 18, 6, 81,…
$ last_review                    <date> 2020-01-17, 2019-10-13, 2020-01-09, 20…
$ reviews_per_month              <dbl> 0.14, 0.16, 0.31, 0.17, 0.12, 0.09, 0.9…
$ calculated_host_listings_count <dbl> 5, 5, 5, 52, 52, 5, 7, 52, 52, 7, 7, 1,…
$ availability_365               <dbl> 89, 89, 89, 275, 274, 89, 365, 365, 365…
$ number_of_reviews_ltm          <dbl> 0, 0, 0, 0, 3, 0, 0, 1, 3, 0, 0, 0, 0, …
$ license                        <chr> NA, NA, NA, "S0399", "S0399", NA, NA, "…
$ geometry                       <POINT [m]> POINT (41972.5 36390.05), POINT (…

Table above shows the content of listing_sf. A new column called geometry has been added into the data frame. The longitude and latitude columns have been dropped from the data frame.

Geoprocessing with sf package

Besides providing functions to handling (i.e. importing, exporting, assigning projection, transforming projection etc) geospatial data, sf package also offers a wide range of geoprocessing (also known as GIS analysis) functions.

In this section, I learned how to perform two commonly used geoprocessing functions, namely buffering and point in polygon count.

Buffering

The scenario:

The authority is planning to upgrade the exiting cycling path. To do so, they need to acquire 5m of reserved land on the both sides of the current cycling path. You are tasked to determine the extend of the land need to be acquired and their total area.

The solution:

Firstly, st_buffer() of sf package is used to compute the 5-meter buffers around cycling paths

buffer_cycling <- st_buffer(cyclingpath, 
                               dist=5, nQuadSegs = 30)

This is followed by calculating the area of the buffers

buffer_cycling$AREA <- st_area(buffer_cycling)

Lastly, sum() of Base R will be used to derive the total land involved

sum(buffer_cycling$AREA)
1774367 [m^2]

Point-in-polygon count

The scenario:

A pre-school service group want to find out the numbers of pre-schools in each Planning Subzone.

The solution:

The code chunk below performs two operations at one go. Firstly, identify pre-schools located inside each Planning Subzone by using st_intersects(). Next, length() of Base R is used to calculate numbers of pre-schools that fall inside each planning subzone.

mpsz3414$`PreSch Count`<- lengths(st_intersects(mpsz3414, preschool3414))

Note: Different from st_intersection().

You can check the summary statistics of the newly derived PreSch Count field by using summary() as shown in the code chunk below.

summary(mpsz3414$`PreSch Count`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00    0.00    4.00    7.09   10.00   72.00 

The top_n() of dplyr package is used to list the planning subzone with the most number of pre-schools

top_n(mpsz3414, 1, `PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 39655.33 ymin: 35966 xmax: 42940.57 ymax: 38622.37
Projected CRS: SVY21 / Singapore TM
  OBJECTID SUBZONE_NO     SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1      189          2 TAMPINES EAST    TMSZ02      N   TAMPINES         TM
     REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR   Y_ADDR SHAPE_Leng
1 EAST REGION       ER 21658EAAF84F4D8D 2014-12-05 41122.55 37392.39   10180.62
  SHAPE_Area                       geometry PreSch Count
1    4339824 MULTIPOLYGON (((42196.76 38...           72

The solution:

Firstly, the code chunk below uses st_area() of sf package to derive the area of each planning subzone.

mpsz3414$Area <- mpsz3414 %>%
  st_area()

Next, mutate() of dplyr package is used to compute the density by using the code chunk below.

mpsz3414 <- mpsz3414 %>%
  mutate(`PreSch Density` = `PreSch Count`/Area * 1000000)

Exploratory Data Analysis (EDA)

Many geospatial analytics start with Exploratory Data Analysis. In this section, I learned how to use appropriate ggplot2 functions to create functional statistical graphs for EDA purposes.

Firstly, we will plot a histogram to reveal the distribution of PreSch Density.

hist(mpsz3414$`PreSch Density`)

gg2plot function

ggplot(data=mpsz3414, 
       aes(x= as.numeric(`PreSch Density`)))+
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue") +
  labs(title = "Are pre-schools evenly distributed in Singapore?",
       subtitle= "There are many planning sub-zones with a single pre-school, and, \nthere are two planning sub-zones with at least 20 pre-schools",
      x = "Pre-school density (per km sq)",
      y = "Frequency")

The solution:

ggplot(data=mpsz3414, 
       aes(y = `PreSch Count`, 
           x= as.numeric(`PreSch Density`)))+
  geom_point(color="black", 
             fill="light blue") +
  xlim(0, 40) +
  ylim(0, 40) +
  labs(title = "",
      x = "Pre-school density (per km sq)",
      y = "Pre-school count")