::p_load(sf, spdep, tmap, tidyverse, knitr) pacman
Hands-on Exercise 2: Spatial Weights and Applications
Overview
In this hands-on exercise, I learned geospatial statistical methods for measuring global and local spatial associations.
Study Area & Data
Hunan county boundary layer. This is a geospatial data set in ESRI shapefile format.
Hunan_2012.csv: This csv file contains selected Hunan’s local development indicators in 2012.
Getting Started
The code chunk below installs and load sf and tidyverse packages into R environment
Getting the Data Into R Environment
Bring geospatial data (ESRI shapefile) and its associated attribute (csv) into R environment.
Import shapefile into R environment
st_read() is used to import Hunan shapefile into R. The imported shapefile will be simple features Object of sf.
<- st_read(dsn = "data/geospatial",
hunan layer = "Hunan")
Reading layer `Hunan' from data source
`C:\lnealicia\ISSS624\Handson_ex02\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
Import csv file into r environment
Import Hunan_2012.csv into R using read_csv(), the output is a R dataframe class.
<- read_csv("data/aspatial/Hunan_2012.csv") hunan2012
Relational Join
Update the attribute table of hunan’s SpatialPolygonsDataFrame with attribute fields of hunan2012 dataframe via leftjoin() of dplyr package.
<- left_join(hunan,hunan2012)%>%
hunan select(1:4, 7, 15)
Visualising Regional Development Indicator
Prepare a basemap and a choropleth map showing the distribution of GDPPC 2012 by using qtm() of tmap package.
<- tm_shape(hunan) +
basemap tm_polygons() +
tm_text("NAME_3", size=0.5)
<- qtm(hunan, "GDPPC")
gdppc tmap_arrange(basemap, gdppc, asp=1, ncol=2)
Computing Contiguity Spatial Weights
Use poly2nb() of spdep package to compute contiguity weight matrices for the study area. This function builds a neighbours list based on regions with contiguous boundaries. Note: A “queen” argument taking TRUE/FALSE option can be passed. Default is set to TRUE.
Computing (QUEEN) contiguity based neighbours
<- poly2nb(hunan, queen=TRUE)
wm_q summary(wm_q)
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Link number distribution:
1 2 3 4 5 6 7 8 9 11
2 2 12 16 24 14 11 4 2 1
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links
The summary report above shows that there are 88 area units in Hunan. The most connected area unit has 11 neighbours. There are two area units with only one neighbours.
For each polygon in our polygon object, wm_q lists all neighboring polygons. To see the neighbors for the first polygon in the object, type:
1]] wm_q[[
[1] 2 3 4 57 85
Polygon 1 has 5 neighbors. The numbers represent the polygon IDs as stored in hunan SpatialPolygonsDataFrame class.
The county name of Polygon ID=1 can be retrieved using the code chunk below:
$County[1] hunan
[1] "Anxiang"
The output reveals that Polygon ID=1 is Anxiang county.
To reveal the county names of the five neighboring polygons, the code chunk will be used:
$NAME_3[c(2,3,4,57,85)] hunan
[1] "Hanshou" "Jinshi" "Li" "Nan" "Taoyuan"
GDPPC of the 5 countries can be retrieved using:
<- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1 nb1
[1] 20981 34592 24473 21311 22879
The printed output above shows that the GDPPC of the five nearest neighbours.
The complete weight matrix can be displayed using str().
str(wm_q)
List of 88
$ : int [1:5] 2 3 4 57 85
$ : int [1:5] 1 57 58 78 85
$ : int [1:4] 1 4 5 85
$ : int [1:4] 1 3 5 6
$ : int [1:4] 3 4 6 85
$ : int [1:5] 4 5 69 75 85
$ : int [1:4] 67 71 74 84
$ : int [1:7] 9 46 47 56 78 80 86
$ : int [1:6] 8 66 68 78 84 86
$ : int [1:8] 16 17 19 20 22 70 72 73
$ : int [1:3] 14 17 72
$ : int [1:5] 13 60 61 63 83
$ : int [1:4] 12 15 60 83
$ : int [1:3] 11 15 17
$ : int [1:4] 13 14 17 83
$ : int [1:5] 10 17 22 72 83
$ : int [1:7] 10 11 14 15 16 72 83
$ : int [1:5] 20 22 23 77 83
$ : int [1:6] 10 20 21 73 74 86
$ : int [1:7] 10 18 19 21 22 23 82
$ : int [1:5] 19 20 35 82 86
$ : int [1:5] 10 16 18 20 83
$ : int [1:7] 18 20 38 41 77 79 82
$ : int [1:5] 25 28 31 32 54
$ : int [1:5] 24 28 31 33 81
$ : int [1:4] 27 33 42 81
$ : int [1:3] 26 29 42
$ : int [1:5] 24 25 33 49 54
$ : int [1:3] 27 37 42
$ : int 33
$ : int [1:8] 24 25 32 36 39 40 56 81
$ : int [1:8] 24 31 50 54 55 56 75 85
$ : int [1:5] 25 26 28 30 81
$ : int [1:3] 36 45 80
$ : int [1:6] 21 41 47 80 82 86
$ : int [1:6] 31 34 40 45 56 80
$ : int [1:4] 29 42 43 44
$ : int [1:4] 23 44 77 79
$ : int [1:5] 31 40 42 43 81
$ : int [1:6] 31 36 39 43 45 79
$ : int [1:6] 23 35 45 79 80 82
$ : int [1:7] 26 27 29 37 39 43 81
$ : int [1:6] 37 39 40 42 44 79
$ : int [1:4] 37 38 43 79
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:3] 8 47 86
$ : int [1:5] 8 35 46 80 86
$ : int [1:5] 50 51 52 53 55
$ : int [1:4] 28 51 52 54
$ : int [1:5] 32 48 52 54 55
$ : int [1:3] 48 49 52
$ : int [1:5] 48 49 50 51 54
$ : int [1:3] 48 55 75
$ : int [1:6] 24 28 32 49 50 52
$ : int [1:5] 32 48 50 53 75
$ : int [1:7] 8 31 32 36 78 80 85
$ : int [1:6] 1 2 58 64 76 85
$ : int [1:5] 2 57 68 76 78
$ : int [1:4] 60 61 87 88
$ : int [1:4] 12 13 59 61
$ : int [1:7] 12 59 60 62 63 77 87
$ : int [1:3] 61 77 87
$ : int [1:4] 12 61 77 83
$ : int [1:2] 57 76
$ : int 76
$ : int [1:5] 9 67 68 76 84
$ : int [1:4] 7 66 76 84
$ : int [1:5] 9 58 66 76 78
$ : int [1:3] 6 75 85
$ : int [1:3] 10 72 73
$ : int [1:3] 7 73 74
$ : int [1:5] 10 11 16 17 70
$ : int [1:5] 10 19 70 71 74
$ : int [1:6] 7 19 71 73 84 86
$ : int [1:6] 6 32 53 55 69 85
$ : int [1:7] 57 58 64 65 66 67 68
$ : int [1:7] 18 23 38 61 62 63 83
$ : int [1:7] 2 8 9 56 58 68 85
$ : int [1:7] 23 38 40 41 43 44 45
$ : int [1:8] 8 34 35 36 41 45 47 56
$ : int [1:6] 25 26 31 33 39 42
$ : int [1:5] 20 21 23 35 41
$ : int [1:9] 12 13 15 16 17 18 22 63 77
$ : int [1:6] 7 9 66 67 74 86
$ : int [1:11] 1 2 3 5 6 32 56 57 69 75 ...
$ : int [1:9] 8 9 19 21 35 46 47 74 84
$ : int [1:4] 59 61 62 88
$ : int [1:2] 59 87
- attr(*, "class")= chr "nb"
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language poly2nb(pl = hunan, queen = TRUE)
- attr(*, "type")= chr "queen"
- attr(*, "sym")= logi TRUE
Creating (ROOK) contiguity based neighbours
Compute Rook contiguity weight matrix using:
<- poly2nb(hunan, queen=FALSE)
wm_r summary(wm_r)
Neighbour list object:
Number of regions: 88
Number of nonzero links: 440
Percentage nonzero weights: 5.681818
Average number of links: 5
Link number distribution:
1 2 3 4 5 6 7 8 9 10
2 2 12 20 21 14 11 3 2 1
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 10 links
The summary report above shows that there are 88 area units in Hunan. The most connect area unit has 10 neighbours. There are two area units with only one neighbours.
Visualising contiguity weights
A connectivity graph takes a point and displays a line to each neighboring point. For polygons, points are needed to make the connectivity graphs. Typical method: polygon centroids using sf package.
<- map_dbl(hunan$geometry, ~st_centroid(.x)[[1]])
longitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]])
latitude <- cbind(longitude, latitude) coords
Check for correct formatting
head(coords)
longitude latitude
[1,] 112.1531 29.44362
[2,] 112.0372 28.86489
[3,] 111.8917 29.47107
[4,] 111.7031 29.74499
[5,] 111.6138 29.49258
[6,] 111.0341 29.79863
Plotting Queen contiguity based neighbours map
plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red")
Plotting Rook contiguity based neighbours map
plot(hunan$geometry, border="lightgrey")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")
Plotting both Queen and Rook contiguity based neighbours maps
par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey", main="Queen Contiguity")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red")
plot(hunan$geometry, border="lightgrey", main="Rook Contiguity")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")
Computing distance based neighbours
derive distance-based weight matrices by using dnearneigh() of spdep package.
Determine the cut-off distance
Determine upper limit for distance band
#coords <- coordinates(hunan)
<- knn2nb(knearneigh(coords))
k1 <- unlist(nbdists(k1, coords, longlat = TRUE))
k1dists summary(k1dists)
Min. 1st Qu. Median Mean 3rd Qu. Max.
24.79 32.57 38.01 39.07 44.52 61.79
The summary report shows that the largest first nearest neighbour distance is 61.79 km, so using this as the upper threshold gives certainty that all units will have at least one neighbour.
Computing fixed distance weight matrix
<- dnearneigh(coords, 0, 62, longlat = TRUE)
wm_d62 wm_d62
Neighbour list object:
Number of regions: 88
Number of nonzero links: 324
Percentage nonzero weights: 4.183884
Average number of links: 3.681818
Average number of links shown above refer to the average number of neighbours each region has in the spatial weights matrix.
Display content of wm_d62 weight matrix
str(wm_d62)
List of 88
$ : int [1:5] 3 4 5 57 64
$ : int [1:4] 57 58 78 85
$ : int [1:4] 1 4 5 57
$ : int [1:3] 1 3 5
$ : int [1:4] 1 3 4 85
$ : int 69
$ : int [1:2] 67 84
$ : int [1:4] 9 46 47 78
$ : int [1:4] 8 46 68 84
$ : int [1:4] 16 22 70 72
$ : int [1:3] 14 17 72
$ : int [1:5] 13 60 61 63 83
$ : int [1:4] 12 15 60 83
$ : int [1:2] 11 17
$ : int 13
$ : int [1:4] 10 17 22 83
$ : int [1:3] 11 14 16
$ : int [1:3] 20 22 63
$ : int [1:5] 20 21 73 74 82
$ : int [1:5] 18 19 21 22 82
$ : int [1:6] 19 20 35 74 82 86
$ : int [1:4] 10 16 18 20
$ : int [1:3] 41 77 82
$ : int [1:4] 25 28 31 54
$ : int [1:4] 24 28 33 81
$ : int [1:4] 27 33 42 81
$ : int [1:2] 26 29
$ : int [1:6] 24 25 33 49 52 54
$ : int [1:2] 27 37
$ : int 33
$ : int [1:2] 24 36
$ : int 50
$ : int [1:5] 25 26 28 30 81
$ : int [1:3] 36 45 80
$ : int [1:6] 21 41 46 47 80 82
$ : int [1:5] 31 34 45 56 80
$ : int [1:2] 29 42
$ : int [1:3] 44 77 79
$ : int [1:4] 40 42 43 81
$ : int [1:3] 39 45 79
$ : int [1:5] 23 35 45 79 82
$ : int [1:5] 26 37 39 43 81
$ : int [1:3] 39 42 44
$ : int [1:2] 38 43
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:5] 8 9 35 47 86
$ : int [1:5] 8 35 46 80 86
$ : int [1:5] 50 51 52 53 55
$ : int [1:4] 28 51 52 54
$ : int [1:6] 32 48 51 52 54 55
$ : int [1:4] 48 49 50 52
$ : int [1:6] 28 48 49 50 51 54
$ : int [1:2] 48 55
$ : int [1:5] 24 28 49 50 52
$ : int [1:4] 48 50 53 75
$ : int 36
$ : int [1:5] 1 2 3 58 64
$ : int [1:5] 2 57 64 66 68
$ : int [1:3] 60 87 88
$ : int [1:4] 12 13 59 61
$ : int [1:5] 12 60 62 63 87
$ : int [1:4] 61 63 77 87
$ : int [1:5] 12 18 61 62 83
$ : int [1:4] 1 57 58 76
$ : int 76
$ : int [1:5] 58 67 68 76 84
$ : int [1:2] 7 66
$ : int [1:4] 9 58 66 84
$ : int [1:2] 6 75
$ : int [1:3] 10 72 73
$ : int [1:2] 73 74
$ : int [1:3] 10 11 70
$ : int [1:4] 19 70 71 74
$ : int [1:5] 19 21 71 73 86
$ : int [1:2] 55 69
$ : int [1:3] 64 65 66
$ : int [1:3] 23 38 62
$ : int [1:2] 2 8
$ : int [1:4] 38 40 41 45
$ : int [1:5] 34 35 36 45 47
$ : int [1:5] 25 26 33 39 42
$ : int [1:6] 19 20 21 23 35 41
$ : int [1:4] 12 13 16 63
$ : int [1:4] 7 9 66 68
$ : int [1:2] 2 5
$ : int [1:4] 21 46 47 74
$ : int [1:4] 59 61 62 88
$ : int [1:2] 59 87
- attr(*, "class")= chr "nb"
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language dnearneigh(x = coords, d1 = 0, d2 = 62, longlat = TRUE)
- attr(*, "dnn")= num [1:2] 0 62
- attr(*, "bounds")= chr [1:2] "GE" "LE"
- attr(*, "nbtype")= chr "distance"
- attr(*, "sym")= logi TRUE
Alternate method to display
table(hunan$County, card(wm_d62))
1 2 3 4 5 6
Anhua 1 0 0 0 0 0
Anren 0 0 0 1 0 0
Anxiang 0 0 0 0 1 0
Baojing 0 0 0 0 1 0
Chaling 0 0 1 0 0 0
Changning 0 0 1 0 0 0
Changsha 0 0 0 1 0 0
Chengbu 0 1 0 0 0 0
Chenxi 0 0 0 1 0 0
Cili 0 1 0 0 0 0
Dao 0 0 0 1 0 0
Dongan 0 0 1 0 0 0
Dongkou 0 0 0 1 0 0
Fenghuang 0 0 0 1 0 0
Guidong 0 0 1 0 0 0
Guiyang 0 0 0 1 0 0
Guzhang 0 0 0 0 0 1
Hanshou 0 0 0 1 0 0
Hengdong 0 0 0 0 1 0
Hengnan 0 0 0 0 1 0
Hengshan 0 0 0 0 0 1
Hengyang 0 0 0 0 0 1
Hongjiang 0 0 0 0 1 0
Huarong 0 0 0 1 0 0
Huayuan 0 0 0 1 0 0
Huitong 0 0 0 1 0 0
Jiahe 0 0 0 0 1 0
Jianghua 0 0 1 0 0 0
Jiangyong 0 1 0 0 0 0
Jingzhou 0 1 0 0 0 0
Jinshi 0 0 0 1 0 0
Jishou 0 0 0 0 0 1
Lanshan 0 0 0 1 0 0
Leiyang 0 0 0 1 0 0
Lengshuijiang 0 0 1 0 0 0
Li 0 0 1 0 0 0
Lianyuan 0 0 0 0 1 0
Liling 0 1 0 0 0 0
Linli 0 0 0 1 0 0
Linwu 0 0 0 1 0 0
Linxiang 1 0 0 0 0 0
Liuyang 0 1 0 0 0 0
Longhui 0 0 1 0 0 0
Longshan 0 1 0 0 0 0
Luxi 0 0 0 0 1 0
Mayang 0 0 0 0 0 1
Miluo 0 0 0 0 1 0
Nan 0 0 0 0 1 0
Ningxiang 0 0 0 1 0 0
Ningyuan 0 0 0 0 1 0
Pingjiang 0 1 0 0 0 0
Qidong 0 0 1 0 0 0
Qiyang 0 0 1 0 0 0
Rucheng 0 1 0 0 0 0
Sangzhi 0 1 0 0 0 0
Shaodong 0 0 0 0 1 0
Shaoshan 0 0 0 0 1 0
Shaoyang 0 0 0 1 0 0
Shimen 1 0 0 0 0 0
Shuangfeng 0 0 0 0 0 1
Shuangpai 0 0 0 1 0 0
Suining 0 0 0 0 1 0
Taojiang 0 1 0 0 0 0
Taoyuan 0 1 0 0 0 0
Tongdao 0 1 0 0 0 0
Wangcheng 0 0 0 1 0 0
Wugang 0 0 1 0 0 0
Xiangtan 0 0 0 1 0 0
Xiangxiang 0 0 0 0 1 0
Xiangyin 0 0 0 1 0 0
Xinhua 0 0 0 0 1 0
Xinhuang 1 0 0 0 0 0
Xinning 0 1 0 0 0 0
Xinshao 0 0 0 0 0 1
Xintian 0 0 0 0 1 0
Xupu 0 1 0 0 0 0
Yanling 0 0 1 0 0 0
Yizhang 1 0 0 0 0 0
Yongshun 0 0 0 1 0 0
Yongxing 0 0 0 1 0 0
You 0 0 0 1 0 0
Yuanjiang 0 0 0 0 1 0
Yuanling 1 0 0 0 0 0
Yueyang 0 0 1 0 0 0
Zhijiang 0 0 0 0 1 0
Zhongfang 0 0 0 1 0 0
Zhuzhou 0 0 0 0 1 0
Zixing 0 0 1 0 0 0
<- n.comp.nb(wm_d62)
n_comp $nc n_comp
[1] 1
table(n_comp$comp.id)
1
88
Plotting fixed distance weight matrix
plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE)
plot(k1, coords, add=TRUE, col="red", length=0.08)
The red lines show the links of 1st nearest neighbours and the black lines show the links of neighbours within the cut-off distance of 62km.
Alternatively, neighbours can be plotted next to each other.
par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey", main="1st nearest neighbours")
plot(k1, coords, add=TRUE, col="red", length=0.08)
plot(hunan$geometry, border="lightgrey", main="Distance link")
plot(wm_d62, coords, add=TRUE, pch = 19, cex = 0.6)
Computing adaptive distance weight matrix
Note for fixed distance weight matrix:
Densely settled areas –> tend to have more neighbours
Less densely settled areas –> tend to have lesser neighbours
It is possible to control the numbers of neighbours directly using k-nearest neighbours, either accepting asymmetric neighbours or imposing symmetry
<- knn2nb(knearneigh(coords, k=6))
knn6 knn6
Neighbour list object:
Number of regions: 88
Number of nonzero links: 528
Percentage nonzero weights: 6.818182
Average number of links: 6
Non-symmetric neighbours list
Display the content of the matrix
str(knn6)
List of 88
$ : int [1:6] 2 3 4 5 57 64
$ : int [1:6] 1 3 57 58 78 85
$ : int [1:6] 1 2 4 5 57 85
$ : int [1:6] 1 3 5 6 69 85
$ : int [1:6] 1 3 4 6 69 85
$ : int [1:6] 3 4 5 69 75 85
$ : int [1:6] 9 66 67 71 74 84
$ : int [1:6] 9 46 47 78 80 86
$ : int [1:6] 8 46 66 68 84 86
$ : int [1:6] 16 19 22 70 72 73
$ : int [1:6] 10 14 16 17 70 72
$ : int [1:6] 13 15 60 61 63 83
$ : int [1:6] 12 15 60 61 63 83
$ : int [1:6] 11 15 16 17 72 83
$ : int [1:6] 12 13 14 17 60 83
$ : int [1:6] 10 11 17 22 72 83
$ : int [1:6] 10 11 14 16 72 83
$ : int [1:6] 20 22 23 63 77 83
$ : int [1:6] 10 20 21 73 74 82
$ : int [1:6] 18 19 21 22 23 82
$ : int [1:6] 19 20 35 74 82 86
$ : int [1:6] 10 16 18 19 20 83
$ : int [1:6] 18 20 41 77 79 82
$ : int [1:6] 25 28 31 52 54 81
$ : int [1:6] 24 28 31 33 54 81
$ : int [1:6] 25 27 29 33 42 81
$ : int [1:6] 26 29 30 37 42 81
$ : int [1:6] 24 25 33 49 52 54
$ : int [1:6] 26 27 37 42 43 81
$ : int [1:6] 26 27 28 33 49 81
$ : int [1:6] 24 25 36 39 40 54
$ : int [1:6] 24 31 50 54 55 56
$ : int [1:6] 25 26 28 30 49 81
$ : int [1:6] 36 40 41 45 56 80
$ : int [1:6] 21 41 46 47 80 82
$ : int [1:6] 31 34 40 45 56 80
$ : int [1:6] 26 27 29 42 43 44
$ : int [1:6] 23 43 44 62 77 79
$ : int [1:6] 25 40 42 43 44 81
$ : int [1:6] 31 36 39 43 45 79
$ : int [1:6] 23 35 45 79 80 82
$ : int [1:6] 26 27 37 39 43 81
$ : int [1:6] 37 39 40 42 44 79
$ : int [1:6] 37 38 39 42 43 79
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:6] 8 9 35 47 78 86
$ : int [1:6] 8 21 35 46 80 86
$ : int [1:6] 49 50 51 52 53 55
$ : int [1:6] 28 33 48 51 52 54
$ : int [1:6] 32 48 51 52 54 55
$ : int [1:6] 28 48 49 50 52 54
$ : int [1:6] 28 48 49 50 51 54
$ : int [1:6] 48 50 51 52 55 75
$ : int [1:6] 24 28 49 50 51 52
$ : int [1:6] 32 48 50 52 53 75
$ : int [1:6] 32 34 36 78 80 85
$ : int [1:6] 1 2 3 58 64 68
$ : int [1:6] 2 57 64 66 68 78
$ : int [1:6] 12 13 60 61 87 88
$ : int [1:6] 12 13 59 61 63 87
$ : int [1:6] 12 13 60 62 63 87
$ : int [1:6] 12 38 61 63 77 87
$ : int [1:6] 12 18 60 61 62 83
$ : int [1:6] 1 3 57 58 68 76
$ : int [1:6] 58 64 66 67 68 76
$ : int [1:6] 9 58 67 68 76 84
$ : int [1:6] 7 65 66 68 76 84
$ : int [1:6] 9 57 58 66 78 84
$ : int [1:6] 4 5 6 32 75 85
$ : int [1:6] 10 16 19 22 72 73
$ : int [1:6] 7 19 73 74 84 86
$ : int [1:6] 10 11 14 16 17 70
$ : int [1:6] 10 19 21 70 71 74
$ : int [1:6] 19 21 71 73 84 86
$ : int [1:6] 6 32 50 53 55 69
$ : int [1:6] 58 64 65 66 67 68
$ : int [1:6] 18 23 38 61 62 63
$ : int [1:6] 2 8 9 46 58 68
$ : int [1:6] 38 40 41 43 44 45
$ : int [1:6] 34 35 36 41 45 47
$ : int [1:6] 25 26 28 33 39 42
$ : int [1:6] 19 20 21 23 35 41
$ : int [1:6] 12 13 15 16 22 63
$ : int [1:6] 7 9 66 68 71 74
$ : int [1:6] 2 3 4 5 56 69
$ : int [1:6] 8 9 21 46 47 74
$ : int [1:6] 59 60 61 62 63 88
$ : int [1:6] 59 60 61 62 63 87
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language knearneigh(x = coords, k = 6)
- attr(*, "sym")= logi FALSE
- attr(*, "type")= chr "knn"
- attr(*, "knn-k")= num 6
- attr(*, "class")= chr "nb"
Note: Each country has exactly 6 neighbours
Plotting distance based neighbours
Plot the weight matrix
plot(hunan$geometry, border="lightgrey")
plot(knn6, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")
Weights based on IDW
Derive a spatial weight matrix based on Inversed Distance method.
Compute the distances between areas
<- nbdists(wm_q, coords, longlat = TRUE)
dist <- lapply(dist, function(x) 1/(x))
ids ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113
[[2]]
[1] 0.01535405 0.01764308 0.01925924 0.02323898 0.01719350
[[3]]
[1] 0.03916350 0.02822040 0.03695795 0.01395765
[[4]]
[1] 0.01820896 0.02822040 0.03414741 0.01539065
[[5]]
[1] 0.03695795 0.03414741 0.01524598 0.01618354
[[6]]
[1] 0.015390649 0.015245977 0.021748129 0.011883901 0.009810297
[[7]]
[1] 0.01708612 0.01473997 0.01150924 0.01872915
[[8]]
[1] 0.02022144 0.03453056 0.02529256 0.01036340 0.02284457 0.01500600 0.01515314
[[9]]
[1] 0.02022144 0.01574888 0.02109502 0.01508028 0.02902705 0.01502980
[[10]]
[1] 0.02281552 0.01387777 0.01538326 0.01346650 0.02100510 0.02631658 0.01874863
[8] 0.01500046
[[11]]
[1] 0.01882869 0.02243492 0.02247473
[[12]]
[1] 0.02779227 0.02419652 0.02333385 0.02986130 0.02335429
[[13]]
[1] 0.02779227 0.02650020 0.02670323 0.01714243
[[14]]
[1] 0.01882869 0.01233868 0.02098555
[[15]]
[1] 0.02650020 0.01233868 0.01096284 0.01562226
[[16]]
[1] 0.02281552 0.02466962 0.02765018 0.01476814 0.01671430
[[17]]
[1] 0.01387777 0.02243492 0.02098555 0.01096284 0.02466962 0.01593341 0.01437996
[[18]]
[1] 0.02039779 0.02032767 0.01481665 0.01473691 0.01459380
[[19]]
[1] 0.01538326 0.01926323 0.02668415 0.02140253 0.01613589 0.01412874
[[20]]
[1] 0.01346650 0.02039779 0.01926323 0.01723025 0.02153130 0.01469240 0.02327034
[[21]]
[1] 0.02668415 0.01723025 0.01766299 0.02644986 0.02163800
[[22]]
[1] 0.02100510 0.02765018 0.02032767 0.02153130 0.01489296
[[23]]
[1] 0.01481665 0.01469240 0.01401432 0.02246233 0.01880425 0.01530458 0.01849605
[[24]]
[1] 0.02354598 0.01837201 0.02607264 0.01220154 0.02514180
[[25]]
[1] 0.02354598 0.02188032 0.01577283 0.01949232 0.02947957
[[26]]
[1] 0.02155798 0.01745522 0.02212108 0.02220532
[[27]]
[1] 0.02155798 0.02490625 0.01562326
[[28]]
[1] 0.01837201 0.02188032 0.02229549 0.03076171 0.02039506
[[29]]
[1] 0.02490625 0.01686587 0.01395022
[[30]]
[1] 0.02090587
[[31]]
[1] 0.02607264 0.01577283 0.01219005 0.01724850 0.01229012 0.01609781 0.01139438
[8] 0.01150130
[[32]]
[1] 0.01220154 0.01219005 0.01712515 0.01340413 0.01280928 0.01198216 0.01053374
[8] 0.01065655
[[33]]
[1] 0.01949232 0.01745522 0.02229549 0.02090587 0.01979045
[[34]]
[1] 0.03113041 0.03589551 0.02882915
[[35]]
[1] 0.01766299 0.02185795 0.02616766 0.02111721 0.02108253 0.01509020
[[36]]
[1] 0.01724850 0.03113041 0.01571707 0.01860991 0.02073549 0.01680129
[[37]]
[1] 0.01686587 0.02234793 0.01510990 0.01550676
[[38]]
[1] 0.01401432 0.02407426 0.02276151 0.01719415
[[39]]
[1] 0.01229012 0.02172543 0.01711924 0.02629732 0.01896385
[[40]]
[1] 0.01609781 0.01571707 0.02172543 0.01506473 0.01987922 0.01894207
[[41]]
[1] 0.02246233 0.02185795 0.02205991 0.01912542 0.01601083 0.01742892
[[42]]
[1] 0.02212108 0.01562326 0.01395022 0.02234793 0.01711924 0.01836831 0.01683518
[[43]]
[1] 0.01510990 0.02629732 0.01506473 0.01836831 0.03112027 0.01530782
[[44]]
[1] 0.01550676 0.02407426 0.03112027 0.01486508
[[45]]
[1] 0.03589551 0.01860991 0.01987922 0.02205991 0.02107101 0.01982700
[[46]]
[1] 0.03453056 0.04033752 0.02689769
[[47]]
[1] 0.02529256 0.02616766 0.04033752 0.01949145 0.02181458
[[48]]
[1] 0.02313819 0.03370576 0.02289485 0.01630057 0.01818085
[[49]]
[1] 0.03076171 0.02138091 0.02394529 0.01990000
[[50]]
[1] 0.01712515 0.02313819 0.02551427 0.02051530 0.02187179
[[51]]
[1] 0.03370576 0.02138091 0.02873854
[[52]]
[1] 0.02289485 0.02394529 0.02551427 0.02873854 0.03516672
[[53]]
[1] 0.01630057 0.01979945 0.01253977
[[54]]
[1] 0.02514180 0.02039506 0.01340413 0.01990000 0.02051530 0.03516672
[[55]]
[1] 0.01280928 0.01818085 0.02187179 0.01979945 0.01882298
[[56]]
[1] 0.01036340 0.01139438 0.01198216 0.02073549 0.01214479 0.01362855 0.01341697
[[57]]
[1] 0.028079221 0.017643082 0.031423501 0.029114131 0.013520292 0.009903702
[[58]]
[1] 0.01925924 0.03142350 0.02722997 0.01434859 0.01567192
[[59]]
[1] 0.01696711 0.01265572 0.01667105 0.01785036
[[60]]
[1] 0.02419652 0.02670323 0.01696711 0.02343040
[[61]]
[1] 0.02333385 0.01265572 0.02343040 0.02514093 0.02790764 0.01219751 0.02362452
[[62]]
[1] 0.02514093 0.02002219 0.02110260
[[63]]
[1] 0.02986130 0.02790764 0.01407043 0.01805987
[[64]]
[1] 0.02911413 0.01689892
[[65]]
[1] 0.02471705
[[66]]
[1] 0.01574888 0.01726461 0.03068853 0.01954805 0.01810569
[[67]]
[1] 0.01708612 0.01726461 0.01349843 0.01361172
[[68]]
[1] 0.02109502 0.02722997 0.03068853 0.01406357 0.01546511
[[69]]
[1] 0.02174813 0.01645838 0.01419926
[[70]]
[1] 0.02631658 0.01963168 0.02278487
[[71]]
[1] 0.01473997 0.01838483 0.03197403
[[72]]
[1] 0.01874863 0.02247473 0.01476814 0.01593341 0.01963168
[[73]]
[1] 0.01500046 0.02140253 0.02278487 0.01838483 0.01652709
[[74]]
[1] 0.01150924 0.01613589 0.03197403 0.01652709 0.01342099 0.02864567
[[75]]
[1] 0.011883901 0.010533736 0.012539774 0.018822977 0.016458383 0.008217581
[[76]]
[1] 0.01352029 0.01434859 0.01689892 0.02471705 0.01954805 0.01349843 0.01406357
[[77]]
[1] 0.014736909 0.018804247 0.022761507 0.012197506 0.020022195 0.014070428
[7] 0.008440896
[[78]]
[1] 0.02323898 0.02284457 0.01508028 0.01214479 0.01567192 0.01546511 0.01140779
[[79]]
[1] 0.01530458 0.01719415 0.01894207 0.01912542 0.01530782 0.01486508 0.02107101
[[80]]
[1] 0.01500600 0.02882915 0.02111721 0.01680129 0.01601083 0.01982700 0.01949145
[8] 0.01362855
[[81]]
[1] 0.02947957 0.02220532 0.01150130 0.01979045 0.01896385 0.01683518
[[82]]
[1] 0.02327034 0.02644986 0.01849605 0.02108253 0.01742892
[[83]]
[1] 0.023354289 0.017142433 0.015622258 0.016714303 0.014379961 0.014593799
[7] 0.014892965 0.018059871 0.008440896
[[84]]
[1] 0.01872915 0.02902705 0.01810569 0.01361172 0.01342099 0.01297994
[[85]]
[1] 0.011451133 0.017193502 0.013957649 0.016183544 0.009810297 0.010656545
[7] 0.013416965 0.009903702 0.014199260 0.008217581 0.011407794
[[86]]
[1] 0.01515314 0.01502980 0.01412874 0.02163800 0.01509020 0.02689769 0.02181458
[8] 0.02864567 0.01297994
[[87]]
[1] 0.01667105 0.02362452 0.02110260 0.02058034
[[88]]
[1] 0.01785036 0.02058034
Row-standardised weights matrix
Assign weights to each neighboring polygon. Below, each neighboring polygon will be assigned equal weight (style=“W”).
This is done via assigning the fraction 1/ (# of neighbours) to each neighbouring country then adding up the weighted income values.
Drawback: Polygons along the edges of the study area will base their lagged values on fewer polygons, thus potentially over- or under-estimating the true nature of the spatial autocorrelation in the data.
<- nb2listw(wm_q, style="W", zero.policy = TRUE)
rswm_q rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: W
Weights constants summary:
n nn S0 S1 S2
W 88 7744 88 37.86334 365.9147
Note: The zero.policy=TRUE option allows for lists of non-neighbors. This should be used with caution since the user may not be aware of missing neighbors in their dataset however, a zero.policy of FALSE would return an error.
To see the weight of the first polygon’s eight neighbors:
$weights[10] rswm_q
[[1]]
[1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Each neighbor is assigned a 0.125 of the total weight. This means that when R computes the average neighboring income values, each neighbor’s income will be multiplied by 0.2 before being tallied.
Using the same method, we can also derive a row standardised distance weight matrix.
<- nb2listw(wm_q, glist=ids, style="B", zero.policy=TRUE)
rswm_ids rswm_ids
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 8.786867 0.3776535 3.8137
$weights[1] rswm_ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113
summary(unlist(rswm_ids$weights))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.008218 0.015088 0.018739 0.019614 0.022823 0.040338
Application of Spatial Weight Matrix
Creating four different spatial lagged variables:
spatial lag with row-standardized weights
spatial lag as a sum of neighbouring values
spatial window average
spatial window sum
Spatial lag with row-standardized weights
Spatially lagged values: Compute average neighbour GDPPC value for each polygon
<- lag.listw(rswm_q, hunan$GDPPC)
GDPPC.lag GDPPC.lag
[1] 24847.20 22724.80 24143.25 27737.50 27270.25 21248.80 43747.00 33582.71
[9] 45651.17 32027.62 32671.00 20810.00 25711.50 30672.33 33457.75 31689.20
[17] 20269.00 23901.60 25126.17 21903.43 22718.60 25918.80 20307.00 20023.80
[25] 16576.80 18667.00 14394.67 19848.80 15516.33 20518.00 17572.00 15200.12
[33] 18413.80 14419.33 24094.50 22019.83 12923.50 14756.00 13869.80 12296.67
[41] 15775.17 14382.86 11566.33 13199.50 23412.00 39541.00 36186.60 16559.60
[49] 20772.50 19471.20 19827.33 15466.80 12925.67 18577.17 14943.00 24913.00
[57] 25093.00 24428.80 17003.00 21143.75 20435.00 17131.33 24569.75 23835.50
[65] 26360.00 47383.40 55157.75 37058.00 21546.67 23348.67 42323.67 28938.60
[73] 25880.80 47345.67 18711.33 29087.29 20748.29 35933.71 15439.71 29787.50
[81] 18145.00 21617.00 29203.89 41363.67 22259.09 44939.56 16902.00 16930.00
GDPPC of these 5 coutnries were previously retrieved using
<- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1 nb1
[1] 20981 34592 24473 21311 22879
Append spatially lag GDPPC values onto hunan sf data frame
<- list(hunan$NAME_3, lag.listw(rswm_q, hunan$GDPPC))
lag.list <- as.data.frame(lag.list)
lag.res colnames(lag.res) <- c("NAME_3", "lag GDPPC")
<- left_join(hunan,lag.res) hunan
Average neighbouring income values for each country
head(hunan)
Simple feature collection with 6 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 110.4922 ymin: 28.61762 xmax: 112.3013 ymax: 30.12812
Geodetic CRS: WGS 84
NAME_2 ID_3 NAME_3 ENGTYPE_3 County GDPPC lag GDPPC
1 Changde 21098 Anxiang County Anxiang 23667 24847.20
2 Changde 21100 Hanshou County Hanshou 20981 22724.80
3 Changde 21101 Jinshi County City Jinshi 34592 24143.25
4 Changde 21102 Li County Li 24473 27737.50
5 Changde 21103 Linli County Linli 25554 27270.25
6 Changde 21104 Shimen County Shimen 27137 21248.80
geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...
Plot the GDPPC and spatial lag GDPPC for comparison
<- qtm(hunan, "GDPPC")
gdppc <- qtm(hunan, "lag GDPPC")
lag_gdppc tmap_arrange(gdppc, lag_gdppc, asp=1, ncol=2)
Spatial lag as a sum of neighboring values
Calculate spatial lag as a sum of neighbouring values by assigning binary weights.
Assign value of 1 per neighbour using lapply.
<- lapply(wm_q, function(x) 0*x + 1)
b_weights <- nb2listw(wm_q,
b_weights2 glist = b_weights,
style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 448 896 10224
With the proper weights assigned, lag.listw used to compute a lag variable from our weight and GDPPC.
<- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
lag_sum <- as.data.frame(lag_sum)
lag.res colnames(lag.res) <- c("NAME_3", "lag_sum GDPPC")
View result
lag_sum
[[1]]
[1] "Anxiang" "Hanshou" "Jinshi" "Li"
[5] "Linli" "Shimen" "Liuyang" "Ningxiang"
[9] "Wangcheng" "Anren" "Guidong" "Jiahe"
[13] "Linwu" "Rucheng" "Yizhang" "Yongxing"
[17] "Zixing" "Changning" "Hengdong" "Hengnan"
[21] "Hengshan" "Leiyang" "Qidong" "Chenxi"
[25] "Zhongfang" "Huitong" "Jingzhou" "Mayang"
[29] "Tongdao" "Xinhuang" "Xupu" "Yuanling"
[33] "Zhijiang" "Lengshuijiang" "Shuangfeng" "Xinhua"
[37] "Chengbu" "Dongan" "Dongkou" "Longhui"
[41] "Shaodong" "Suining" "Wugang" "Xinning"
[45] "Xinshao" "Shaoshan" "Xiangxiang" "Baojing"
[49] "Fenghuang" "Guzhang" "Huayuan" "Jishou"
[53] "Longshan" "Luxi" "Yongshun" "Anhua"
[57] "Nan" "Yuanjiang" "Jianghua" "Lanshan"
[61] "Ningyuan" "Shuangpai" "Xintian" "Huarong"
[65] "Linxiang" "Miluo" "Pingjiang" "Xiangyin"
[69] "Cili" "Chaling" "Liling" "Yanling"
[73] "You" "Zhuzhou" "Sangzhi" "Yueyang"
[77] "Qiyang" "Taojiang" "Shaoyang" "Lianyuan"
[81] "Hongjiang" "Hengyang" "Guiyang" "Changsha"
[85] "Taoyuan" "Xiangtan" "Dao" "Jiangyong"
[[2]]
[1] 124236 113624 96573 110950 109081 106244 174988 235079 273907 256221
[11] 98013 104050 102846 92017 133831 158446 141883 119508 150757 153324
[21] 113593 129594 142149 100119 82884 74668 43184 99244 46549 20518
[31] 140576 121601 92069 43258 144567 132119 51694 59024 69349 73780
[41] 94651 100680 69398 52798 140472 118623 180933 82798 83090 97356
[51] 59482 77334 38777 111463 74715 174391 150558 122144 68012 84575
[61] 143045 51394 98279 47671 26360 236917 220631 185290 64640 70046
[71] 126971 144693 129404 284074 112268 203611 145238 251536 108078 238300
[81] 108870 108085 262835 248182 244850 404456 67608 33860
Append the lag_sum GDPPC field into hunan
sf data frame
<- left_join(hunan, lag.res) hunan
Plot GDPPC and Spatial Lag Sum GDPPC for comparison
<- qtm(hunan, "GDPPC")
gdppc <- qtm(hunan, "lag_sum GDPPC")
lag_sum_gdppc tmap_arrange(gdppc, lag_sum_gdppc, asp=1, ncol=2)
Spatial window average
Spatial window average uses row-standardized weights and includes the diagonal element.
Add the diagonal element to the neighbour list using include.self() from spdep.
<- include.self(wm_q) wm_qs
View neighbour list of area [1]
1]] wm_qs[[
[1] 1 2 3 4 57 85
Obtain weights
<- nb2listw(wm_qs)
wm_qs wm_qs
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Weights style: W
Weights constants summary:
n nn S0 S1 S2
W 88 7744 88 30.90265 357.5308
nb2listw() and glist() is used again to explicitly assign weight values.
Create the lag variable from weight structure and GDPPC variable.
<- lag.listw(wm_qs,
lag_w_avg_gpdpc $GDPPC)
hunan lag_w_avg_gpdpc
[1] 24650.50 22434.17 26233.00 27084.60 26927.00 22230.17 47621.20 37160.12
[9] 49224.71 29886.89 26627.50 22690.17 25366.40 25825.75 30329.00 32682.83
[17] 25948.62 23987.67 25463.14 21904.38 23127.50 25949.83 20018.75 19524.17
[25] 18955.00 17800.40 15883.00 18831.33 14832.50 17965.00 17159.89 16199.44
[33] 18764.50 26878.75 23188.86 20788.14 12365.20 15985.00 13764.83 11907.43
[41] 17128.14 14593.62 11644.29 12706.00 21712.29 43548.25 35049.00 16226.83
[49] 19294.40 18156.00 19954.75 18145.17 12132.75 18419.29 14050.83 23619.75
[57] 24552.71 24733.67 16762.60 20932.60 19467.75 18334.00 22541.00 26028.00
[65] 29128.50 46569.00 47576.60 36545.50 20838.50 22531.00 42115.50 27619.00
[73] 27611.33 44523.29 18127.43 28746.38 20734.50 33880.62 14716.38 28516.22
[81] 18086.14 21244.50 29568.80 48119.71 22310.75 43151.60 17133.40 17009.33
Convert the lag variable listw object into a data.frame by using as.data.frame()
<- list(hunan$NAME_3, lag.listw(wm_qs, hunan$GDPPC))
lag.list.wm_qs <- as.data.frame(lag.list.wm_qs)
lag_wm_qs.res colnames(lag_wm_qs.res) <- c("NAME_3", "lag_window_avg GDPPC")
Note: The third command line on the code chunk above renames the field names of lag_wm_q1.res object into NAME_3 and lag_window_avg GDPPC respectively.
Append lag_window_avg GDPPC values onto hunan sf data.frame by using left_join() of dplyr package.
<- left_join(hunan, lag_wm_qs.res) hunan
Compare values of lag GDPPC and Spatial window average, using kable()
of Knitr package
%>%
hunan select("County",
"lag GDPPC",
"lag_window_avg GDPPC") %>%
kable()
County | lag GDPPC | lag_window_avg GDPPC | geometry |
---|---|---|---|
Anxiang | 24847.20 | 24650.50 | POLYGON ((112.0625 29.75523… |
Hanshou | 22724.80 | 22434.17 | POLYGON ((112.2288 29.11684… |
Jinshi | 24143.25 | 26233.00 | POLYGON ((111.8927 29.6013,… |
Li | 27737.50 | 27084.60 | POLYGON ((111.3731 29.94649… |
Linli | 27270.25 | 26927.00 | POLYGON ((111.6324 29.76288… |
Shimen | 21248.80 | 22230.17 | POLYGON ((110.8825 30.11675… |
Liuyang | 43747.00 | 47621.20 | POLYGON ((113.9905 28.5682,… |
Ningxiang | 33582.71 | 37160.12 | POLYGON ((112.7181 28.38299… |
Wangcheng | 45651.17 | 49224.71 | POLYGON ((112.7914 28.52688… |
Anren | 32027.62 | 29886.89 | POLYGON ((113.1757 26.82734… |
Guidong | 32671.00 | 26627.50 | POLYGON ((114.1799 26.20117… |
Jiahe | 20810.00 | 22690.17 | POLYGON ((112.4425 25.74358… |
Linwu | 25711.50 | 25366.40 | POLYGON ((112.5914 25.55143… |
Rucheng | 30672.33 | 25825.75 | POLYGON ((113.6759 25.87578… |
Yizhang | 33457.75 | 30329.00 | POLYGON ((113.2621 25.68394… |
Yongxing | 31689.20 | 32682.83 | POLYGON ((113.3169 26.41843… |
Zixing | 20269.00 | 25948.62 | POLYGON ((113.7311 26.16259… |
Changning | 23901.60 | 23987.67 | POLYGON ((112.6144 26.60198… |
Hengdong | 25126.17 | 25463.14 | POLYGON ((113.1056 27.21007… |
Hengnan | 21903.43 | 21904.38 | POLYGON ((112.7599 26.98149… |
Hengshan | 22718.60 | 23127.50 | POLYGON ((112.607 27.4689, … |
Leiyang | 25918.80 | 25949.83 | POLYGON ((112.9996 26.69276… |
Qidong | 20307.00 | 20018.75 | POLYGON ((111.7818 27.0383,… |
Chenxi | 20023.80 | 19524.17 | POLYGON ((110.2624 28.21778… |
Zhongfang | 16576.80 | 18955.00 | POLYGON ((109.9431 27.72858… |
Huitong | 18667.00 | 17800.40 | POLYGON ((109.9419 27.10512… |
Jingzhou | 14394.67 | 15883.00 | POLYGON ((109.8186 26.75842… |
Mayang | 19848.80 | 18831.33 | POLYGON ((109.795 27.98008,… |
Tongdao | 15516.33 | 14832.50 | POLYGON ((109.9294 26.46561… |
Xinhuang | 20518.00 | 17965.00 | POLYGON ((109.227 27.43733,… |
Xupu | 17572.00 | 17159.89 | POLYGON ((110.7189 28.30485… |
Yuanling | 15200.12 | 16199.44 | POLYGON ((110.9652 28.99895… |
Zhijiang | 18413.80 | 18764.50 | POLYGON ((109.8818 27.60661… |
Lengshuijiang | 14419.33 | 26878.75 | POLYGON ((111.5307 27.81472… |
Shuangfeng | 24094.50 | 23188.86 | POLYGON ((112.263 27.70421,… |
Xinhua | 22019.83 | 20788.14 | POLYGON ((111.3345 28.19642… |
Chengbu | 12923.50 | 12365.20 | POLYGON ((110.4455 26.69317… |
Dongan | 14756.00 | 15985.00 | POLYGON ((111.4531 26.86812… |
Dongkou | 13869.80 | 13764.83 | POLYGON ((110.6622 27.37305… |
Longhui | 12296.67 | 11907.43 | POLYGON ((110.985 27.65983,… |
Shaodong | 15775.17 | 17128.14 | POLYGON ((111.9054 27.40254… |
Suining | 14382.86 | 14593.62 | POLYGON ((110.389 27.10006,… |
Wugang | 11566.33 | 11644.29 | POLYGON ((110.9878 27.03345… |
Xinning | 13199.50 | 12706.00 | POLYGON ((111.0736 26.84627… |
Xinshao | 23412.00 | 21712.29 | POLYGON ((111.6013 27.58275… |
Shaoshan | 39541.00 | 43548.25 | POLYGON ((112.5391 27.97742… |
Xiangxiang | 36186.60 | 35049.00 | POLYGON ((112.4549 28.05783… |
Baojing | 16559.60 | 16226.83 | POLYGON ((109.7015 28.82844… |
Fenghuang | 20772.50 | 19294.40 | POLYGON ((109.5239 28.19206… |
Guzhang | 19471.20 | 18156.00 | POLYGON ((109.8968 28.74034… |
Huayuan | 19827.33 | 19954.75 | POLYGON ((109.5647 28.61712… |
Jishou | 15466.80 | 18145.17 | POLYGON ((109.8375 28.4696,… |
Longshan | 12925.67 | 12132.75 | POLYGON ((109.6337 29.62521… |
Luxi | 18577.17 | 18419.29 | POLYGON ((110.1067 28.41835… |
Yongshun | 14943.00 | 14050.83 | POLYGON ((110.0003 29.29499… |
Anhua | 24913.00 | 23619.75 | POLYGON ((111.6034 28.63716… |
Nan | 25093.00 | 24552.71 | POLYGON ((112.3232 29.46074… |
Yuanjiang | 24428.80 | 24733.67 | POLYGON ((112.4391 29.1791,… |
Jianghua | 17003.00 | 16762.60 | POLYGON ((111.6461 25.29661… |
Lanshan | 21143.75 | 20932.60 | POLYGON ((112.2286 25.61123… |
Ningyuan | 20435.00 | 19467.75 | POLYGON ((112.0715 26.09892… |
Shuangpai | 17131.33 | 18334.00 | POLYGON ((111.8864 26.11957… |
Xintian | 24569.75 | 22541.00 | POLYGON ((112.2578 26.0796,… |
Huarong | 23835.50 | 26028.00 | POLYGON ((112.9242 29.69134… |
Linxiang | 26360.00 | 29128.50 | POLYGON ((113.5502 29.67418… |
Miluo | 47383.40 | 46569.00 | POLYGON ((112.9902 29.02139… |
Pingjiang | 55157.75 | 47576.60 | POLYGON ((113.8436 29.06152… |
Xiangyin | 37058.00 | 36545.50 | POLYGON ((112.9173 28.98264… |
Cili | 21546.67 | 20838.50 | POLYGON ((110.8822 29.69017… |
Chaling | 23348.67 | 22531.00 | POLYGON ((113.7666 27.10573… |
Liling | 42323.67 | 42115.50 | POLYGON ((113.5673 27.94346… |
Yanling | 28938.60 | 27619.00 | POLYGON ((113.9292 26.6154,… |
You | 25880.80 | 27611.33 | POLYGON ((113.5879 27.41324… |
Zhuzhou | 47345.67 | 44523.29 | POLYGON ((113.2493 28.02411… |
Sangzhi | 18711.33 | 18127.43 | POLYGON ((110.556 29.40543,… |
Yueyang | 29087.29 | 28746.38 | POLYGON ((113.343 29.61064,… |
Qiyang | 20748.29 | 20734.50 | POLYGON ((111.5563 26.81318… |
Taojiang | 35933.71 | 33880.62 | POLYGON ((112.0508 28.67265… |
Shaoyang | 15439.71 | 14716.38 | POLYGON ((111.5013 27.30207… |
Lianyuan | 29787.50 | 28516.22 | POLYGON ((111.6789 28.02946… |
Hongjiang | 18145.00 | 18086.14 | POLYGON ((110.1441 27.47513… |
Hengyang | 21617.00 | 21244.50 | POLYGON ((112.7144 26.98613… |
Guiyang | 29203.89 | 29568.80 | POLYGON ((113.0811 26.04963… |
Changsha | 41363.67 | 48119.71 | POLYGON ((112.9421 28.03722… |
Taoyuan | 22259.09 | 22310.75 | POLYGON ((112.0612 29.32855… |
Xiangtan | 44939.56 | 43151.60 | POLYGON ((113.0426 27.8942,… |
Dao | 16902.00 | 17133.40 | POLYGON ((111.498 25.81679,… |
Jiangyong | 16930.00 | 17009.33 | POLYGON ((111.3659 25.39472… |
qtm() of tmap package is used to plot the lag_gdppc and w_ave_gdppc maps next to each other for quick comparison.
<- qtm(hunan, "lag_window_avg GDPPC")
w_avg_gdppc tmap_arrange(lag_gdppc, w_avg_gdppc, asp=1, ncol=2)
Note: For more effective comparison, it is advicible to use the core tmap mapping functions.
Spatial window sum
Spatial window sum is the counter part of the window average, but without using row-standardized weights.
Add the diagonal element to the neighbour list
<- include.self(wm_q)
wm_qs wm_qs
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Assign binary weights to the neighbour structure that includes the diagonal element
<- lapply(wm_qs, function(x) 0*x + 1)
b_weights 1] b_weights[
[[1]]
[1] 1 1 1 1 1 1
Use nb2listw() and glist() to explicitly assign weight values.
<- nb2listw(wm_qs,
b_weights2 glist = b_weights,
style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 536 1072 14160
Compute the lag variable with lag.listw() with new weight structure
<- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
w_sum_gdppc w_sum_gdppc
[[1]]
[1] "Anxiang" "Hanshou" "Jinshi" "Li"
[5] "Linli" "Shimen" "Liuyang" "Ningxiang"
[9] "Wangcheng" "Anren" "Guidong" "Jiahe"
[13] "Linwu" "Rucheng" "Yizhang" "Yongxing"
[17] "Zixing" "Changning" "Hengdong" "Hengnan"
[21] "Hengshan" "Leiyang" "Qidong" "Chenxi"
[25] "Zhongfang" "Huitong" "Jingzhou" "Mayang"
[29] "Tongdao" "Xinhuang" "Xupu" "Yuanling"
[33] "Zhijiang" "Lengshuijiang" "Shuangfeng" "Xinhua"
[37] "Chengbu" "Dongan" "Dongkou" "Longhui"
[41] "Shaodong" "Suining" "Wugang" "Xinning"
[45] "Xinshao" "Shaoshan" "Xiangxiang" "Baojing"
[49] "Fenghuang" "Guzhang" "Huayuan" "Jishou"
[53] "Longshan" "Luxi" "Yongshun" "Anhua"
[57] "Nan" "Yuanjiang" "Jianghua" "Lanshan"
[61] "Ningyuan" "Shuangpai" "Xintian" "Huarong"
[65] "Linxiang" "Miluo" "Pingjiang" "Xiangyin"
[69] "Cili" "Chaling" "Liling" "Yanling"
[73] "You" "Zhuzhou" "Sangzhi" "Yueyang"
[77] "Qiyang" "Taojiang" "Shaoyang" "Lianyuan"
[81] "Hongjiang" "Hengyang" "Guiyang" "Changsha"
[85] "Taoyuan" "Xiangtan" "Dao" "Jiangyong"
[[2]]
[1] 147903 134605 131165 135423 134635 133381 238106 297281 344573 268982
[11] 106510 136141 126832 103303 151645 196097 207589 143926 178242 175235
[21] 138765 155699 160150 117145 113730 89002 63532 112988 59330 35930
[31] 154439 145795 112587 107515 162322 145517 61826 79925 82589 83352
[41] 119897 116749 81510 63530 151986 174193 210294 97361 96472 108936
[51] 79819 108871 48531 128935 84305 188958 171869 148402 83813 104663
[61] 155742 73336 112705 78084 58257 279414 237883 219273 83354 90124
[71] 168462 165714 165668 311663 126892 229971 165876 271045 117731 256646
[81] 126603 127467 295688 336838 267729 431516 85667 51028
Convert the lag variable listw object into a data frame using as.data.frame()
<- as.data.frame(w_sum_gdppc)
w_sum_gdppc.res colnames(w_sum_gdppc.res) <- c("NAME_3", "w_sum GDPPC")
Note: The second command line on the code chunk above renames the field names of w_sum_gdppc.res object into NAME_3 and w_sum GDPPC respectively.
Append w_sum GDPPC values onto hunan sf data frame by using left_join() of dplyr package.
<- left_join(hunan, w_sum_gdppc.res) hunan
kable()
of Knitr package is used to prepare a table to compare the values of lag GDPPCC and Spatial window average
%>%
hunan select("County", "lag_sum GDPPC", "w_sum GDPPC") %>%
kable()
County | lag_sum GDPPC | w_sum GDPPC | geometry |
---|---|---|---|
Anxiang | 124236 | 147903 | POLYGON ((112.0625 29.75523… |
Hanshou | 113624 | 134605 | POLYGON ((112.2288 29.11684… |
Jinshi | 96573 | 131165 | POLYGON ((111.8927 29.6013,… |
Li | 110950 | 135423 | POLYGON ((111.3731 29.94649… |
Linli | 109081 | 134635 | POLYGON ((111.6324 29.76288… |
Shimen | 106244 | 133381 | POLYGON ((110.8825 30.11675… |
Liuyang | 174988 | 238106 | POLYGON ((113.9905 28.5682,… |
Ningxiang | 235079 | 297281 | POLYGON ((112.7181 28.38299… |
Wangcheng | 273907 | 344573 | POLYGON ((112.7914 28.52688… |
Anren | 256221 | 268982 | POLYGON ((113.1757 26.82734… |
Guidong | 98013 | 106510 | POLYGON ((114.1799 26.20117… |
Jiahe | 104050 | 136141 | POLYGON ((112.4425 25.74358… |
Linwu | 102846 | 126832 | POLYGON ((112.5914 25.55143… |
Rucheng | 92017 | 103303 | POLYGON ((113.6759 25.87578… |
Yizhang | 133831 | 151645 | POLYGON ((113.2621 25.68394… |
Yongxing | 158446 | 196097 | POLYGON ((113.3169 26.41843… |
Zixing | 141883 | 207589 | POLYGON ((113.7311 26.16259… |
Changning | 119508 | 143926 | POLYGON ((112.6144 26.60198… |
Hengdong | 150757 | 178242 | POLYGON ((113.1056 27.21007… |
Hengnan | 153324 | 175235 | POLYGON ((112.7599 26.98149… |
Hengshan | 113593 | 138765 | POLYGON ((112.607 27.4689, … |
Leiyang | 129594 | 155699 | POLYGON ((112.9996 26.69276… |
Qidong | 142149 | 160150 | POLYGON ((111.7818 27.0383,… |
Chenxi | 100119 | 117145 | POLYGON ((110.2624 28.21778… |
Zhongfang | 82884 | 113730 | POLYGON ((109.9431 27.72858… |
Huitong | 74668 | 89002 | POLYGON ((109.9419 27.10512… |
Jingzhou | 43184 | 63532 | POLYGON ((109.8186 26.75842… |
Mayang | 99244 | 112988 | POLYGON ((109.795 27.98008,… |
Tongdao | 46549 | 59330 | POLYGON ((109.9294 26.46561… |
Xinhuang | 20518 | 35930 | POLYGON ((109.227 27.43733,… |
Xupu | 140576 | 154439 | POLYGON ((110.7189 28.30485… |
Yuanling | 121601 | 145795 | POLYGON ((110.9652 28.99895… |
Zhijiang | 92069 | 112587 | POLYGON ((109.8818 27.60661… |
Lengshuijiang | 43258 | 107515 | POLYGON ((111.5307 27.81472… |
Shuangfeng | 144567 | 162322 | POLYGON ((112.263 27.70421,… |
Xinhua | 132119 | 145517 | POLYGON ((111.3345 28.19642… |
Chengbu | 51694 | 61826 | POLYGON ((110.4455 26.69317… |
Dongan | 59024 | 79925 | POLYGON ((111.4531 26.86812… |
Dongkou | 69349 | 82589 | POLYGON ((110.6622 27.37305… |
Longhui | 73780 | 83352 | POLYGON ((110.985 27.65983,… |
Shaodong | 94651 | 119897 | POLYGON ((111.9054 27.40254… |
Suining | 100680 | 116749 | POLYGON ((110.389 27.10006,… |
Wugang | 69398 | 81510 | POLYGON ((110.9878 27.03345… |
Xinning | 52798 | 63530 | POLYGON ((111.0736 26.84627… |
Xinshao | 140472 | 151986 | POLYGON ((111.6013 27.58275… |
Shaoshan | 118623 | 174193 | POLYGON ((112.5391 27.97742… |
Xiangxiang | 180933 | 210294 | POLYGON ((112.4549 28.05783… |
Baojing | 82798 | 97361 | POLYGON ((109.7015 28.82844… |
Fenghuang | 83090 | 96472 | POLYGON ((109.5239 28.19206… |
Guzhang | 97356 | 108936 | POLYGON ((109.8968 28.74034… |
Huayuan | 59482 | 79819 | POLYGON ((109.5647 28.61712… |
Jishou | 77334 | 108871 | POLYGON ((109.8375 28.4696,… |
Longshan | 38777 | 48531 | POLYGON ((109.6337 29.62521… |
Luxi | 111463 | 128935 | POLYGON ((110.1067 28.41835… |
Yongshun | 74715 | 84305 | POLYGON ((110.0003 29.29499… |
Anhua | 174391 | 188958 | POLYGON ((111.6034 28.63716… |
Nan | 150558 | 171869 | POLYGON ((112.3232 29.46074… |
Yuanjiang | 122144 | 148402 | POLYGON ((112.4391 29.1791,… |
Jianghua | 68012 | 83813 | POLYGON ((111.6461 25.29661… |
Lanshan | 84575 | 104663 | POLYGON ((112.2286 25.61123… |
Ningyuan | 143045 | 155742 | POLYGON ((112.0715 26.09892… |
Shuangpai | 51394 | 73336 | POLYGON ((111.8864 26.11957… |
Xintian | 98279 | 112705 | POLYGON ((112.2578 26.0796,… |
Huarong | 47671 | 78084 | POLYGON ((112.9242 29.69134… |
Linxiang | 26360 | 58257 | POLYGON ((113.5502 29.67418… |
Miluo | 236917 | 279414 | POLYGON ((112.9902 29.02139… |
Pingjiang | 220631 | 237883 | POLYGON ((113.8436 29.06152… |
Xiangyin | 185290 | 219273 | POLYGON ((112.9173 28.98264… |
Cili | 64640 | 83354 | POLYGON ((110.8822 29.69017… |
Chaling | 70046 | 90124 | POLYGON ((113.7666 27.10573… |
Liling | 126971 | 168462 | POLYGON ((113.5673 27.94346… |
Yanling | 144693 | 165714 | POLYGON ((113.9292 26.6154,… |
You | 129404 | 165668 | POLYGON ((113.5879 27.41324… |
Zhuzhou | 284074 | 311663 | POLYGON ((113.2493 28.02411… |
Sangzhi | 112268 | 126892 | POLYGON ((110.556 29.40543,… |
Yueyang | 203611 | 229971 | POLYGON ((113.343 29.61064,… |
Qiyang | 145238 | 165876 | POLYGON ((111.5563 26.81318… |
Taojiang | 251536 | 271045 | POLYGON ((112.0508 28.67265… |
Shaoyang | 108078 | 117731 | POLYGON ((111.5013 27.30207… |
Lianyuan | 238300 | 256646 | POLYGON ((111.6789 28.02946… |
Hongjiang | 108870 | 126603 | POLYGON ((110.1441 27.47513… |
Hengyang | 108085 | 127467 | POLYGON ((112.7144 26.98613… |
Guiyang | 262835 | 295688 | POLYGON ((113.0811 26.04963… |
Changsha | 248182 | 336838 | POLYGON ((112.9421 28.03722… |
Taoyuan | 244850 | 267729 | POLYGON ((112.0612 29.32855… |
Xiangtan | 404456 | 431516 | POLYGON ((113.0426 27.8942,… |
Dao | 67608 | 85667 | POLYGON ((111.498 25.81679,… |
Jiangyong | 33860 | 51028 | POLYGON ((111.3659 25.39472… |
qtm() of tmap package is used to plot the lag_sum GDPPC and w_sum_gdppc maps next to each other for quick comparison.
<- qtm(hunan, "w_sum GDPPC")
w_sum_gdppc tmap_arrange(lag_sum_gdppc, w_sum_gdppc, asp=1, ncol=2)
Note: For more effective comparison, it is advisible to use the core tmap mapping functions.